35 research outputs found

    VSX2 and ASCL1 are indicators of neurogenic competence in human retinal progenitor cultures

    Get PDF
    Three dimensional (3D) culture techniques are frequently used for CNS tissue modeling and organoid production, including generation of retina-like tissues. A proposed advantage of these 3D systems is their potential to more closely approximate in vivo cellular microenvironments, which could translate into improved manufacture and/or maintenance of neuronal populations. Visual System Homeobox 2 (VSX2) labels all multipotent retinal progenitor cells (RPCs) and is known to play important roles in retinal development. In contrast, the proneural transcription factor Acheate scute-like 1 (ASCL1) is expressed transiently in a subset of RPCs, but is required for the production of most retinal neurons. Therefore, we asked whether the presence of VSX2 and ASCL1 could gauge neurogenic potential in 3D retinal cultures derived from human prenatal tissue or ES cells (hESCs). Short term prenatal 3D retinal cultures displayed multiple characteristics of human RPCs (hRPCs) found in situ, including robust expression of VSX2. Upon initiation of hRPC differentiation, there was a small increase in co-labeling of VSX2+ cells with ASCL1, along with a modest increase in the number of PKCa+ neurons. However, 3D prenatal retinal cultures lost expression of VSX2 and ASCL1 over time while concurrently becoming refractory to neuronal differentiation. Conversely, 3D optic vesicles derived from hESCs (hESC-OVs) maintained a robust VSX2+ hRPC population that could spontaneously co-express ASCL1 and generate photoreceptors and other retinal neurons for an extended period of time. These results show that VSX2 and ASCL1 can serve as markers for neurogenic potential in cultured hRPCs. Furthermore, unlike hESC-OVs, maintenance of 3D structure does not independently convey an advantage in the culture of prenatal hRPCs, further illustrating differences in the survival and differentiation requirements of hRPCs extracted from native tissue vs. those generated entirely in vitro

    Isolation of Human Photoreceptor Precursors via a Cell Surface Marker Panel from Stem Cell-derived Retinal Organoids and Fetal Retinae

    Get PDF
    Loss of photoreceptor cells due to retinal degeneration is one of the main causes of blindness in the developed world. Although there is currently no effective treatment, cell replacement therapy using stem-cell-derived photoreceptor cells may be a feasible future treatment option. In order to ensure safety and efficacy of this approach, robust cell isolation and purification protocols must be developed. To this end, we previously developed a biomarker panel for the isolation of mouse photoreceptor precursors from the developing mouse retina and mouse embryonic stem cell cultures. In the current study we applied this approach to the human pluripotent stem cell (hPSC) system, and identified novel biomarker combinations that can be leveraged for the isolation of human photoreceptors. Human retinal samples and hPSC-derived retinal organoid cultures were screened against 242 human monoclonal antibodies using a high through-put flow cytometry approach. We identified 46 biomarkers with significant expression levels in the human retina and hPSC differentiation cultures. Human retinal cell samples, either from fetal tissue or derived from embryonic and induced pluripotent stem cell cultures, were FAC-sorted using selected candidate biomarkers that showed expression in discrete cell populations. Enrichment for photoreceptors and exclusion of mitotically active cells was demonstrated by immunocytochemical analysis with photoreceptor-specific antibodies and Ki-67. We established a biomarker combination, which enables the robust purification of viable human photoreceptors from both human retinae and hPSC-derived organoid cultures. This article is protected by copyright. All rights reserved

    Transplantation of Photoreceptor and Total Neural Retina Preserves Cone Function in P23H Rhodopsin Transgenic Rat

    Get PDF
    Background: Transplantation as a therapeutic strategy for inherited retinal degeneration has been historically viewed to restore vision as a method by replacing the lost retinal cells and attempting to reconstruct the neural circuitry with stem cells, progenitor cells and mature neural retinal cells. Methods and Findings: We present evidence for an alternative strategy aimed at preventing the secondary loss of cones, the most crucial photoreceptors for vision, by transplanting normal photoreceptors cells into the eye of the P23H rat, a model of dominant retinitis pigmentosa. We carried out transplantation of photoreceptors or total neural retina in 3-monthold P23H rats and evaluated the function and cell counts 6 months after surgery. In both groups, cone loss was significantly reduced (10%) in the transplanted eyes where the cone outer segments were found to be considerably longer. This morphological effect correlated with maintenance of the visual function of cones as scored by photopic ERG recording, but more precisely with an increase in the photopic b-wave amplitudes by 100 % and 78 % for photoreceptor transplantation and whole retinal transplantation respectively. Conclusions: We demonstrate here that the transplanted tissue prevents the loss of cone function, which is furthe

    Protection of Visual Functions by Human Neural Progenitors in a Rat Model of Retinal Disease

    Get PDF
    BACKGROUND: A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. METHODOLOGY/PRINCIPAL FINDINGS: Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. CONCLUSIONS/SIGNIFICANCE: Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo

    Determinants of preventable readmissions in the United States: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital readmissions are a leading topic of healthcare policy and practice reform because they are common, costly, and potentially avoidable events. Hospitals face the prospect of reduced or eliminated reimbursement for an increasing number of preventable readmissions under nationwide cost savings and quality improvement efforts. To meet the current changes and future expectations, organizations are looking for potential strategies to reduce readmissions. We undertook a systematic review of the literature to determine what factors are associated with preventable readmissions.</p> <p>Methods</p> <p>We conducted a review of the English language medicine, health, and health services research literature (2000 to 2009) for research studies dealing with unplanned, avoidable, preventable, or early readmissions. Each of these modifying terms was included in keyword searches of readmissions or rehospitalizations in Medline, ISI, CINAHL, The Cochrane Library, ProQuest Health Management, and PAIS International. Results were limited to US adult populations.</p> <p>Results</p> <p>The review included 37 studies with significant variation in index conditions, readmitting conditions, timeframe, and terminology. Studies of cardiovascular-related readmissions were most common, followed by all cause readmissions, other surgical procedures, and other specific-conditions. Patient-level indicators of general ill health or complexity were the commonly identified risk factors. While more than one study demonstrated preventable readmissions vary by hospital, identification of many specific organizational level characteristics was lacking.</p> <p>Conclusions</p> <p>The current literature on preventable readmissions in the US contains evidence from a variety of patient populations, geographical locations, healthcare settings, study designs, clinical and theoretical perspectives, and conditions. However, definitional variations, clear gaps, and methodological challenges limit translation of this literature into guidance for the operation and management of healthcare organizations. We recommend that those organizations that propose to reward reductions in preventable readmissions invest in additional research across multiple hospitals in order to fill this serious gap in knowledge of great potential value to payers, providers, and patients.</p

    Characterization of the cGMP-dependent protein kinase SmcGK1 of Schistosoma mansoni

    No full text
    Schistosomes are trematode parasites and of worldwide medical importance for humans and animals. Growth and development of these parasites require a specific host environment, but also permanent communication processes between the two genders. Accumulating molecular evidence indicates that the responsible interactions are mediated by signal transduction processes. Conserved signaling molecules were identified, and first approaches made for their characterization. However, no representative of the conserved family of cGMP-dependent protein kinases (cGKs) has been described in this parasite yet. Within the Schistosoma mansoni genome data-set we identified cGK homologs, of which one was investigated in more detail in this study. We present the cloning of SmcGK1, whose sequence shows homology to cGKs of higher eukaryotes. SmcGK1 was found to be gender-independently transcribed in adult schistosomes. The occurrence of SmcGK1 sense and antisense transcripts suggests that the expression of this gene is controlled at the post-transcriptional level. In situ hybridization experiments demonstrated a gonad-preferential expression profile in both genders indicating a role of SmcGK1, at least during sexual development of schistosomes. Using a cGK-specific inhibitor to treat adult schistosomes in vitro finally resulted in a multifaceted phenotype including slow motion, oocyte congestion, and reduced egg production.<br>Esquistossomos são parasitas trematodos de importância médica em todo o mundo para o homem e os animais. O crescimento e o desenvolvimento destes parasitas requerem um ambiente específico do hospedeiro, mas também um processo de comunicação permanente entre parasitas dos dois sexos. Evidência molecular tem se acumulado e indica que as interações são mediadas por processos de transdução de sinal. Moléculas sinalizadoras conservadas foram identificadas, e as primeiras abordagens têm sido feitas para sua caracterização. Contudo, não foi ainda descrito nenhum representante da família conservada das proteína-quinases dependentes de cGMP (cGKs) neste parasita. Analisando o genoma do Schistosoma mansoni nós identificamos homólogos de cGK, dos quais um foi investigado em mais detalhe no presente estudo. Aqui apresentamos a clonagem do gene SmcGK1, cuja sequência mostra homologia com cGKs de eucariotos superiores. Smc- GK1 foi detectada como sendo transcrita de forma gêneroindependente em esquistossomos adultos. A ocorrência de transcritos de SmcGK1 senso e antisenso sugere que a expressão deste gene é controlada em nível pos-transcricional. Experimentos de hibridização in situ demonstraram uma expressão preferencial nas gônadas em ambos os gêneros, indicando um papel para SmcGK1, pelo menos durante o desenvolvimento de esquistossomos. Usando um inibidor específico de cGK para tratamento de esquistossomos adultos in vitro finalmente resultou em um fenótipo multifacetado, incluindo movimentos lentos, congestão dos oócitos, e redução da produção de ovos
    corecore